R. William Field, PhD, MS
College of Public Health
Department of Occupational and Environmental Health
Department of Epidemiology
University of Iowa

Residential Radon Epidemiology

Example - Case-Control Epidemiologic Study

"Statistics are people with the tears wiped away."

Irving Selikoff
Cancer Statistics, 2012

Trends in Death Rates Among Males for Selected Cancers, United States, 1930 to 2008.
Rates are age adjusted to the 2000 US standard population.

CA: A Cancer Journal for Clinicians
Volume 62, Issue 1, pages 10-29, 4 JAN 2012 DOI: 10.3322/caac.20138

RISK PERCEPTION: Why is the evidence ignored or not accepted??

- Invisible, odorless, colorless
- Naturally occurring outdoors
- Can not link an individual death to radon exposure
- Long latency period
- Not a dread hazard
- Cancers occur one at a time
- Lung cancer does not occur in children
- Voluntary risk
- Lack of press – no sensational story
- No sensory reminders to repetitively stimulate us to think about it
Scientific Evidence
Cause and Effect

- Biological credibility (plausibility)
- Validity of study design
- Consistency across investigations
- Evidence of dose-response relationship
U.S. Radon Potential

- Based on geology and surveys
- Expected closed building radon (pCi/L):
 - Zone 1: 4.0 and above
 - Zone 2: between 2.0 & 4.0
 - Zone 3: 2.0 and lower

Tobacco Use and Cancer

Some Cancer-Causing Chemicals in Tobacco Smoke

- aminostilbene
- arsenic
- benz[a]antrachene
- benz[a]pyrene
- benzene
- benzo[b]fluoranthene
- benzo[ghi]perylene
- cadmium
- chrysene
- dibenz[a]antrachene
- dibenz[a]pyrene
- dibenz[a]chryside
- dibenz[a]carycine
- dibenzofurane
- N-dibutyl nitrosamine
- 2,3-dimethylchryside
- indene[1,2,3-c,d]pyrene
- S-methylchryside
- S-methylfluoranthene
- alpha-naphthylamine
- nickel compounds
- N-nitrosodimethylamine
- N-nitrosomethylamine
- N-nitrosodiethylamine
- N-nitrosonornicotine
- N-nitrosoanabasine
- N-nitrosopiperidine
- polonium-210
Nature. 1974 May
17:249(454): 215-7
Radioactivity of tobacco
trichomes and insoluble
cigarette smoke particles.

Martell EA
Cancer Mortality - 2012

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Estimated U.S. Deaths/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lung and Bronchus</td>
<td>160,340</td>
</tr>
<tr>
<td>2. Colon and Rectum</td>
<td>51,690</td>
</tr>
<tr>
<td>3. Breast Cancer</td>
<td>39,920</td>
</tr>
<tr>
<td>4. Pancreas</td>
<td>37,390</td>
</tr>
<tr>
<td>5. Prostate</td>
<td>28,170</td>
</tr>
<tr>
<td>6. Leukemia</td>
<td>23,540</td>
</tr>
<tr>
<td>7. Liver and Bile Duct</td>
<td>20,550</td>
</tr>
<tr>
<td>8. Non-Hodgkin Lymphoma</td>
<td>18,940</td>
</tr>
<tr>
<td>9. Ovary</td>
<td>15,500</td>
</tr>
<tr>
<td>10. Esophagus</td>
<td>15,070</td>
</tr>
<tr>
<td>11. Urinary Bladder</td>
<td>14,880</td>
</tr>
<tr>
<td>12. Kidney and Renal Pelvis</td>
<td>13,570</td>
</tr>
<tr>
<td>13. Myeloma</td>
<td>10,710</td>
</tr>
<tr>
<td>14. Stomach</td>
<td>10,540</td>
</tr>
<tr>
<td>15. Melanoma</td>
<td>9,180</td>
</tr>
</tbody>
</table>

Radon Epidemiology

- 1556 Agricola - Miners in Europe
- 1879 Harting & Hesse - Lung Cancer in Miners
- 1921 Uhlig - Radium Emanations & Lung Cancer
- 1950s Peller - First Review of Mining Related Cancers
- 1970s Studies of Underground Miners (ongoing)
- 1990s Residential Radon Studies
- 1994 NCI Pooled Analyses of Miners
- 1999 NAS BEIR VI Report
- 2005 North American and European Pooled Residential Radon Studies
- 2007 Global Pooling of Residential Radon Studies
- 2007 Pooling of Glass-based Residential Radon Studies

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
National Academy of Sciences
BEIR VI 1999

• Risk estimates based primarily on radon-exposed miners

• Estimated 18,600 lung cancer deaths each year in the U.S. from residential radon exposure

In 2003, the EPA updated the BEIR VI risk estimates to 21,000 radon-related lung cancer deaths each year in the United States.

Based on its analysis, EPA estimates that out of a total of 146,400 lung cancer deaths nationally in 1995, 21,100 (14.4%) were radon related. Although it is not feasible to totally eliminate radon from the air, it is estimated that about one-third of the radon-related lung cancers could be averted by reducing radon concentrations in homes that exceed EPA’s recommended 4 picocurie per liter (pCi/L) action level (NAS 1999).

http://www.epa.gov/radon/risk_assessment.html
CANCER MORTALITY - 2012

<table>
<thead>
<tr>
<th>CANCER TYPE</th>
<th>ESTIMATED U.S. DEATHS/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lung and Bronchus</td>
<td>160,340</td>
</tr>
<tr>
<td>2. Colon and Rectum</td>
<td>51,690</td>
</tr>
<tr>
<td>3. Breast Cancer</td>
<td>39,920</td>
</tr>
<tr>
<td>4. Pancreas</td>
<td>37,390</td>
</tr>
<tr>
<td>5. Prostate</td>
<td>28,170</td>
</tr>
<tr>
<td>6. Leukemia</td>
<td>23,540</td>
</tr>
<tr>
<td>>>> Radon Induced Lung Cancer</td>
<td>21,000</td>
</tr>
<tr>
<td>7. Liver and Bile Duct</td>
<td>20,550</td>
</tr>
<tr>
<td>8. Non-Hodgkin Lymphoma</td>
<td>18,940</td>
</tr>
<tr>
<td>9. Ovary</td>
<td>15,500</td>
</tr>
<tr>
<td>10. Esophagus</td>
<td>15,070</td>
</tr>
<tr>
<td>11. Urinary Bladder</td>
<td>14,880</td>
</tr>
<tr>
<td>12. Kidney and Renal Pelvis</td>
<td>13,570</td>
</tr>
<tr>
<td>13. Myeloma</td>
<td>10,710</td>
</tr>
<tr>
<td>14. Stomach</td>
<td>10,540</td>
</tr>
</tbody>
</table>

Epidemiology Study Designs

- **Ecological**
 - Compares level of disease & exposure in groups
 - Cannot correlate exposure to sick individuals
 - Cannot control for confounders

- **Cohort**
 - Identify populations based on exposure
 - Follow for disease occurrence

- **Case-Control**
 - Identify Individuals with disease & individuals without disease
 - Look at and compare exposures
Residential Radon Case-Control
Around the World

European Pooling
- 13 Studies from 9 Countries
 - Austria
 - Czech Republic
 - Finland [nationwide]
 - Finland [south]
 - France
 - Germany [eastern]
 - Germany [western]
 - Italy
 - Spain
 - Sweden [nationwide]
 - Sweden [never smokers]
 - Sweden [Stockholm]
 - United Kingdom

North American Pooling
- 7 Studies from 2 countries:
 - New Jersey
 - Winnipeg
 - Missouri I [non-smoking women]
 - Missouri II [women]
 - Iowa
 - Connecticut
 - Utah-South Idaho

- Total 7,148 cases and 14,208 controls

Basement and Living Area Radon Concentrations for U.S. Residential Radon Studies.

<table>
<thead>
<tr>
<th>Study Location</th>
<th>Geometric Mean in pCi/L</th>
<th>Basement</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Missouri-I</td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Missouri-II</td>
<td></td>
<td>2.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Iowa</td>
<td></td>
<td>4.6</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Connecticut, Utah</td>
<td></td>
<td>1.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Southern Idaho²</td>
<td></td>
<td>1.8</td>
<td>1.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1 Summary data represent those homes that were measured with no imputed (values added to replace missing values) values.

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
THE IOWA RADON LUNG CANCER STUDY (IRLCS)

Overview and Example

RADON EXPOSURE ASSESSMENT CHALLENGES

- Quality Assurance/Quality Control
- Temporal and Spatial Radon Variation
- Missing Data Due to Inability to Measure Previous Homes
- Estimating Non-Residential Radon Exposure
- Measuring Radon Gas a Surrogate for Radon Progeny
Support for this research was provided by a grant from the National Institute of Environmental Health Sciences, National Institutes of Health.

Residential Radon Gas Exposure and Lung Cancer: The Iowa Radon Lung Cancer Study (IRLCS)

American Journal of Epidemiology,
Differences Between the Other Case-Control Studies and the Iowa Study

- Performed in areas with low or average radon concentrations
- Had 30% - 60% percent missing radon data for previous 20 years which required imputation
- Did not account for where subjects spent time
- Did not link radon concentrations (within the home and outside the home) with where the subject spent time
- Measurements were limited to radon gas only
- Poor dosimetry quality control

STUDY DESIGN

- Population-based case-control study
- Geographic area: state of Iowa
- 413 female cases/614 female controls
- Study period: 10/92 to 10/97
MAJOR COMPONENTS

Rapid-reporting of cases: 93%
Median time diagnosis to ascertainment: 20 days

- Detailed questionnaires:
 - health, diet, home characteristics, mobility
- 1 Year home radon measurements
- Histopathologic review of lung tissue:
 - 96% of cases

Journal of Exposure Analysis and Environmental Epidemiology, Field et al. 1996
Case Eligibility/Ascertainment

Female Iowa resident
No prior malignant lung cancer
Ages 40 - 84
Alive or deceased at initial contact
Newly diagnosed invasive lung cancer
without prior invasive lung cancer;
histologically-confirmed
Reside in current home ≥ 20 years
No history of residential radon mitigation

Geographic Coverage

Surveillance Epidemiology and End Results
Providing information on cancer statistics to help reduce the burden of this disease on the U.S. population

Original SEER Registries
SEER Registries Added in 1992
SEER Registries Added in 2000

Seattle/Puget Sound
San Francisco/Oakland
San Jose/Monterey
Los Angeles

SEER: AK Native Tumor Registry
Added in 1999

SEER: AZ Native American Studies
Added in 1992

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
Control Eligibility/Ascertainment

- Female Iowa resident
- No prior malignant lung cancer
- Ages 40 - 84
- Alive at initial contact
- Reside in current home \geq 20 years
- No history of residential radon mitigation

IRLCS Inclusion Criteria

20-year residency criteria in current home avoids imputation of data

Previous studies imputed 20% - 58% of data because of the inability to measure radon in previous homes
Histopathologic Review

- Blinded review by two surgical pathologists
- Consensus diagnosis based on World Health Organization 1981 (WHO) histologic type
- 72% agreement between Iowa Cancer Registry and consensus histologic type

The relative odds of misclassification for samples collected using cytology and biopsy as compared to resection was 2.4 (CI; 1.1-5.2) and 2.2 (CI; 1.1-4.2), respectively. JNCI 2004.

Morphologic Distribution of 413 Lung Cancers

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>175</td>
<td>42.4</td>
</tr>
<tr>
<td>Squamous Cell</td>
<td>82</td>
<td>19.9</td>
</tr>
<tr>
<td>Small Cell</td>
<td>74</td>
<td>17.9</td>
</tr>
<tr>
<td>Large Cell</td>
<td>32</td>
<td>7.7</td>
</tr>
<tr>
<td>Carcinoma, NOS</td>
<td>50</td>
<td>12.1</td>
</tr>
</tbody>
</table>
CONTROL SELECTION

Age 40-64:
from Driver’s License Tapes

Age 65-84:
from HCFA Records

STUDY DEMOGRAPHICS

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>413</td>
<td>614</td>
</tr>
<tr>
<td>Age in yrs. (median)</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>Residency in yrs. (median)</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Alive at interview</td>
<td>69%</td>
<td>100%</td>
</tr>
<tr>
<td>Ever-smokers</td>
<td>86%</td>
<td>33%</td>
</tr>
<tr>
<td>Previous lung disease</td>
<td>44%</td>
<td>27%</td>
</tr>
<tr>
<td>At least H.S. Education</td>
<td>90%</td>
<td>92%</td>
</tr>
</tbody>
</table>
HOUSING CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Home</td>
<td>62 yrs</td>
<td>56 yrs</td>
</tr>
<tr>
<td>Square Footage</td>
<td>1,879</td>
<td>1,990</td>
</tr>
<tr>
<td>Central AC</td>
<td>60.7%</td>
<td>64.7%</td>
</tr>
<tr>
<td>Window AC only</td>
<td>32.8%</td>
<td>29.9%</td>
</tr>
<tr>
<td>Forced air (1 Story)</td>
<td>91.8%</td>
<td>90.4%</td>
</tr>
<tr>
<td>Forced air (2 Story)</td>
<td>82.8%</td>
<td>80.4%</td>
</tr>
</tbody>
</table>

LEVELS OF HOME

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 story home</td>
<td>49.4%</td>
<td>51.5%</td>
</tr>
<tr>
<td>2 story home</td>
<td>48.0%</td>
<td>44.1%</td>
</tr>
<tr>
<td>3 story home</td>
<td>2.6%</td>
<td>4.1%</td>
</tr>
<tr>
<td>4 story home</td>
<td>0%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>
IOWA RADON LUNG CANCER STUDY

Phase 1

^{222}Rn Gas Measurements

^{222}Rn CONCENTRATION

^{222}Rn EXPOSURE

^{222}Rn PROGENY DOSE
COMPREHENSIVE 222Rn EXPOSURE ASSESSMENT

Home: Temporally and spatially weighted radon exposure

Outside: Temporally weighted outdoor radon exposure derived from kriged data from outdoor radon monitoring network

Building: Temporally weighted estimated value representing 50% of kriged 1ST floor radon concentration

COMPREHENSIVE 222Rn EXPOSURE

Home Exposure

Outdoor Exposure

Other Building Exposure
HOME 222Rn EXPOSURE

REQUIRES KNOWLEDGE OF:

- Time spent at home
 (Cases 73.2% Controls 72.1%)
- Subject mobility while at home
- Radon concentrations in various parts of the home

HOME RADON EXPOSURE

SUBJECT MOBILITY INTERVIEW

Obtains mobility patterns within/outside the home using seasonally adjusted task linkage

- Identifies temporal periods when mobility remains fairly constant
- Permits linkage of mobility information to radon measurements
SUBJECT MOBILITY INFORMATION

- **Hours in-home**: Bedroom, home work area, basement, upper level, kitchen/dining room
- **Hours in another building**: Type of activities (work, church, recreation), seasonal variation
- **Hours outdoors**: Type of activities (gardening, walking, work), seasonal variation

SPATIAL HOME MOBILITY

One Story Homes (N=494)
- Basement: 6.4%
- 1st Story: 93.6%

Two Story Homes (N=437)
- Basement: 3.2%
- 2nd Story: 21.8%
- 1st Story: 75.0%

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
PERCENT OF TIME IN HOME BY AGE

Radon Measurement

Continuous Radon Monitors
- Labor intensive
- Time consuming
- Expensive

Short-Term Radon Monitoring
- Fast
- Cheap
- Do not allow for estimates of yearly radon variation
RADON GAS DETECTORS

Alpha track detectors (ATDs)

-- yearly integrated mean radon measurement
-- up to 7 ATDs per home
-- second year measurements
PLACEMENT OF ATDs

- Bedroom (and historic bedroom)
- 1 ATD per level of home with placement weighted by participant occupancy time
- 1 ATD in home work area
Quality Assurance/Quality Control

- Spiked Samples (5%)
- Field Duplicates (12%)
- Field Control Detectors (5%)
- Strictly Adhered to Written QA Plan
- Oversight by QA Officer

Radon Measurement Devices (ATDs) Installed

<table>
<thead>
<tr>
<th>Total ATDs placed</th>
<th>4,626</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean number/home</td>
<td>4.0</td>
</tr>
<tr>
<td>Percent retrieved</td>
<td>97.2%</td>
</tr>
</tbody>
</table>

Duplicates placed | 515
Percent duplicates | 12.5%
Mean COV (S.D.) | 6.9%(7.2)
Collocated Radon Gas Measurements

Detector Accuracy and Precision “Spiked Detectors”

<table>
<thead>
<tr>
<th>Exposure Equivalent</th>
<th>MARE</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pCi/L</td>
<td>12.8 %</td>
<td>8.3 %</td>
</tr>
<tr>
<td>4 pCi/L</td>
<td>11.4 %</td>
<td>7.5 %</td>
</tr>
<tr>
<td>6 pCi/L</td>
<td>8.6 %</td>
<td>5.7 %</td>
</tr>
</tbody>
</table>

COMPREHENSIVE RADON EXPOSURE

Home Exposure
Outdoor Exposure
Other Building Exposure

Outdoor ^{222}Rn Concentrations

June 1997
OUTDOOR ^{222}Rn EXPOSURE

REQUIRES KNOWLEDGE OF:

- Time spent outdoors
 (Cases 7.6% Controls 8.5%)
- Radon concentrations outdoors

OUTDOOR RADON MEASUREMENTS

111 Outdoor ^{222}Rn gas and ^{222}Rn progeny measurements have been made in over 70 Iowa counties during 1995, 1996 and 1997.

Geometric mean (GSD) = 0.8 pCi/L (1.4)

Outdoor Radon in Iowa

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
OUTDOOR 222Rn EXPOSURE

- The mean outdoor kriged radon concentration within 1 mile of the home is weighted at 50%.

- The mean outdoor kriged radon concentration from 1 to 20 miles away from the home is weighted at 50% with decreasing weight as you progress from 1 to 20 miles away.
COMPREHENSIVE RADON EXPOSURE

Home Exposure
Outdoor Exposure
Other Building Exposure

OTHER BUILDING 222Rn EXPOSURE

Time spent in other building
(Cases 14.2% Controls 14.4 %)
Linked to
50% of kriged radon value for the
1st floor measurements (from control homes) weighted for surrounding 20 miles
FIRST STORY 222Rn CONCENTRATIONS

222Rn Exposure Occurring Away on Vacation or Business

Case 5.0%, Control 4.9%

The average of the national mean indoor 222Rn concentration (1.5 pCi/L) and national mean outdoor 222Rn concentration (0.4 pCi/L).
Exposure Model Combining Radon Levels and Subject Mobility

Working level month cumulative exposure model:

\[WLM_{5-19} \propto \sum \text{time}_i \times \text{radon}_i \]

where the sum is over the years 5-19 prior to enrollment and includes the following locations:

Home (individual floors, bedrooms, work area), Outside, Another Building, Away on Vacation/Business

IMPUTED VALUES

<table>
<thead>
<tr>
<th>Time Period</th>
<th>% Population</th>
<th>% Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imputed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 - 20 Years</td>
<td>100 %</td>
<td>0 %</td>
</tr>
<tr>
<td>0 - 30 Years</td>
<td>58 %</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>42 %</td>
<td>18 %</td>
</tr>
</tbody>
</table>
LOGISTIC REGRESSION RISK MODEL

VARIABLES INCLUDED IN MODEL
- Age (Dx or enrollment)
- Education (yrs. attained)
- Active smoking
 -- Pack-year rate
 -- Year since quit smoking or never smoker
- Radon (continuous and categorical)

OTHER VARIABLES CONSIDERED
- Pre-existing lung disease
- Number of children
- Urban/rural status
- Asbestos exposure
- Family history of cancer

Design of a Case-Control Study

Exposed Not Exposed Exposed Not Exposed

Disease No Disease Lung Cancer Cases Controls
Odds Ratio

\[
\frac{\frac{a}{c}}{\frac{b}{d}} = \frac{ad}{bc}
\]

Case	Control
E+ | a | b
E- | c | d

ADJUSTED ODDS RATIO FOR ACTIVE SMOKERS

<table>
<thead>
<tr>
<th>TYPE OF SMOKER</th>
<th>Never</th>
<th>Light</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>1.0</td>
<td>8.1</td>
<td>29.0</td>
</tr>
<tr>
<td>95% CI</td>
<td>--</td>
<td>5.6-11.7</td>
<td>19.1-43.9</td>
</tr>
</tbody>
</table>

Light and heavy smokers were divided by the median pack-year rate. Odds ratios adjusted for age, education, and cumulative radon exposure.
Distribution of Cases and Controls by Exposure Category

<table>
<thead>
<tr>
<th>Cumulative Radon Exposure</th>
<th>Cases (Live)</th>
<th>Controls</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4.23</td>
<td>56 (37)</td>
<td>104</td>
<td>160</td>
</tr>
<tr>
<td>4.24-8.47</td>
<td>147 (98)</td>
<td>229</td>
<td>376</td>
</tr>
<tr>
<td>8.48-12.70</td>
<td>87 (61)</td>
<td>118</td>
<td>205</td>
</tr>
<tr>
<td>12.71-16.94</td>
<td>56 (39)</td>
<td>75</td>
<td>131</td>
</tr>
<tr>
<td>16.95+</td>
<td>67 (48)</td>
<td>88</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>413</td>
<td>614</td>
<td>1027</td>
</tr>
</tbody>
</table>

Radon-Lung Cancer Association

<table>
<thead>
<tr>
<th>WLM<sub>5.19</sub> Cumulative Radon Exposure</th>
<th>p-trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td></td>
</tr>
<tr>
<td>All:</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>0-4.23</td>
<td>1.00</td>
</tr>
<tr>
<td>4.24-8.47</td>
<td>1.34</td>
</tr>
<tr>
<td>8.48-12.70</td>
<td>1.73</td>
</tr>
<tr>
<td>12.71-16.94</td>
<td>1.62</td>
</tr>
<tr>
<td>16.95+</td>
<td>1.79</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.81-2.22</td>
</tr>
<tr>
<td>0.99-3.04</td>
<td>0.88-2.99</td>
</tr>
<tr>
<td>0.99-3.26</td>
<td></td>
</tr>
<tr>
<td>Cont. Cat.</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>0.14</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.01-1.22</td>
</tr>
</tbody>
</table>

Live:	
OR	
0-4.23	1.00
4.24-8.47	1.31
8.48-12.70	1.79
12.71-16.94	1.74
16.95+	2.14
95% CI	0.75-2.31
0.97-3.33	0.88-3.43
1.12-4.15	

Estimates are adjusted for age, active smoking and education.
Iowa Radon Lung Cancer Study (IRLCS)

The estimated excess risk, excess risk was approximately 50% higher (0.24 – 0.80) for an exposure to 4 pCi/L for 15 years.

Odds Ratios by Histologic Cancer Type

<table>
<thead>
<tr>
<th>Histologic Type</th>
<th>Cumulative Radon Exposure (WLM)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous (82)</td>
<td>0-4.23 4.24-8.47 8.48-12.7 12.7-16.94 16.95+</td>
<td>0.18 0.06</td>
</tr>
<tr>
<td>Adeno CA (175)</td>
<td>0.79-5.90 0.81-6.75 0.77-7.90 1.00-10.99</td>
<td>0.33 0.41</td>
</tr>
<tr>
<td>Large Cell (32)</td>
<td>0.49-2.86 0.70-4.95 0.90-3.86 0.93-14.53</td>
<td>0.84 0.93</td>
</tr>
</tbody>
</table>

Estimates are adjusted for age, active smoking and education.
SUMMARY

- The Iowa Radon Lung Cancer Study found a statistically significant association between residential radon exposure and lung cancer.

- The findings suggest that prolonged exposure to radon, even at 4 pCi/L, increases lung cancer risk.

- These findings suggest that radon is a major environmental carcinogen.

Have Previous Residential Radon Studies Underestimated Risk?

The evidence indicates that they have underestimated risk.
Why have the risks been under reported in residential radon studies?

Major Reasons for Poor Exposure Assessment

- Missing radon measurements in previous homes
- Failure to link radon concentrations with where people spent time
- Poor QA/QC
- Studies performed in low radon areas
- Inadequate consideration of temporal radon variations
- High percentage of proxy respondents

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
We have “demonstrated that empiric models with improved retrospective radon exposure estimates were more likely to detect an association between prolonged residential radon exposure and lung cancer.”

Therefore, estimated pooled risk estimates are likely low.

Risk estimates **decrease** when one fails to link radon concentrations with where the subject spends time

Random misclassification of radon exposure tends to bias studies toward finding no association between radon concentrations and lung cancer
Risk Estimates for Alternative Models
(all subjects)

Risk Estimates for Alternative Models
(live cases and controls)

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
RESIDENTIAL RADON EPIDEMIOLOGY - Future Activities

- World pooling of residential radon studies
- Complete radon progeny-based study
- Occupational exposures
- Promote awareness of radon and RRNC
- Radon related gene studies
- Explore avenues to evaluate the possible association between radon exposure and other possible adverse health outcomes, e.g., leukemia
Retrospective Radon Measurements

\[^{218}\text{Po} \text{ and } ^{214}\text{Po} \text{ deliver the radiologically significant dose to the respiratory epithelium.} \]

- **Radon-222**: 4 day
 - \(\alpha, \gamma \)

- **Polonium-218**: 3 min
 - \(\alpha, \gamma \)

- **Lead-214**: 27 min
 - \(\beta, \gamma \)

- **Bismuth-214**: 20 min
 - \(\beta, \gamma \)

- **Polonium-214**: 0.2 ms
 - \(\alpha, \gamma \)

- **Lead-210**: 22 yrs
 - \(\beta, \gamma \)

- **Bismuth-210**: 5 day
 - \(\beta, \gamma \)

- **Polonium-210**: 138 day
 - \(\alpha, \gamma \)

- **Lead-206**: Stable

- **Long residency in glass**

- **Decay easy to measure**

HRD schematic
HISTORIC RECONSTRUCTION DETECTOR (HRD)

- Glass-based radon progeny measurement
- Measures contemporary radon gas concentration
- Measures contemporary radon progeny deposition
- Measures retrospective deposition of radon progeny in glass surfaces via implanted Polonium-210.
- Reconstruction of airborne concentrations using a semi-empirical model

RESIDENTIAL RADON EPIDEMIOLOGY - Future Activities

- Complete radon progeny-based study
- World pooling of residential radon studies
- **Occupational exposures**
- Promote awareness of radon and RRNC
- Radon related gene studies
- Explore avenues to evaluate the possible association between radon exposure and other possible adverse health outcomes, e.g., leukemia
Occupational Exposure to Radon – Very Common

- Mine workers, including uranium, hard rock, and vanadium
- Workers remediating radioactive contaminated sites, including uranium mill sites and mill tailings
- Workers at underground nuclear waste repositories
- Radon mitigation contractors and testers
- Employees of natural caves
- Phosphate fertilizer plant workers
- Oil refinery workers
- Utility tunnel workers

- Subway tunnel workers
- Construction excavators
- Power plant workers, including geothermal power and coal
- Employees of radon health mines
- Employees of radon balneotherapy spas (waterborne radon source)
- Water plant operators (waterborne radon source)
- Fish hatchery attendants (waterborne radon source)
- Employees who come in contact with technologically enhanced sources of naturally occurring radioactive materials
- Incidental exposure in almost any occupation from local geologic radon sources
- Farming related activities
RESIDENTIAL RADON EPIDEMIOLOGY - Future Activities

- Complete radon progeny-based study
- World pooling of residential radon studies
- Occupational exposures
- Promote awareness of radon and RRNC
- Radon related gene studies
- Explore avenues to evaluate the possible association between radon exposure and other possible adverse health outcomes, e.g., leukemia

What Happens When Radon Decay Products Are Inhaled?

- Highly radioactive particles adhere to lung tissue, where they can irradiate sensitive cells.
- Radiation can alter the cells, increasing the potential for cancer.

Double Strand Breaks
Ionizing radiation can directly and indirectly damage DNA

Defects in tumor suppressor genes – p53

At risk individuals--GSTM₁
(glutathione S-transferase M1)

RESIDENTIAL RADON EPIDEMIOLOGY - Future Activities

- Complete radon progeny-based study
- World pooling of residential radon studies
- Occupational exposures
- Promote awareness of radon and RRNC
- Radon related gene studies
- Explore avenues to evaluate the association between radon exposure and other possible adverse health outcomes, e.g., leukemia
Residential radon epidemiology has made major advances in the past 10 years.

The residential radon studies have provided direct evidence that prolonged residential radon is one of our leading public health risks and major cause of cancer mortality.

Radon is our leading environmental cause of cancer mortality and seventh leading cause of cancer mortality overall.
6. National radon programmes

KEY MESSAGES

- National radon programmes should aim to reduce the overall population risk and the individual risk for people living with high radon concentrations.

- To limit the risk to individuals, a national reference level of 100 Bq/m² is recommended. Wherever this is not possible, the chosen level should not exceed 300 Bq/m³.

- To reduce the risk to the overall population, building codes should be implemented that require radon prevention measures in homes under construction. Radon measurements are needed because building codes alone cannot guarantee that radon concentrations will be below the reference level.

- Detailed national guidance on radon measurement protocols is essential to ensure quality and consistency in radon testing. A national radon database that monitors the measurement results over time can be used to evaluate the effectiveness of a national radon programme.

- An effective national radon programme requires input from several agencies within a country. One agency should lead the implementation and coordination and ensure linkage with tobacco control and other health promotion programmes.
Availability of WHO Handbook

- WHO Handbook on Indoor Radon: A Public Health Perspective:

- WHO Radon Webpage:

Published April 2010
The two-member panel – Dr. LaSalle D. Lefall, Jr., a professor of surgery at Howard University and Margaret Kripke, a professor at University of Texas’ M.D. Anderson Cancer Center – was appointed by President Bush to three-year terms.

The two panelists met with nearly 50 medical experts in late 2008 and early 2009 before writing their report to the president.

Annual Effective Dose Equivalent to Member of the U.S. Population NCRP 93 (1987)

<table>
<thead>
<tr>
<th>Source</th>
<th>Natural (mrem)</th>
<th>Artificial (mrem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radon</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cosmic</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Terrestrial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-external</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>-internal</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Artificial:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Diag. X-rays</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>-Nuc. Med.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>-Consumer Pro.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-Other</td>
<td>~1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>~360</td>
<td></td>
</tr>
</tbody>
</table>

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
Medical Radiation

• The Panel urged physicians to use caution in prescribing CT scans and other medical imaging tests that expose patients to large amounts of radiation.

• In 2007, 69 million CT scans were performed, compared with 18 million in 1993. As noted in the report, patients who have a chest CT scan receive a dose of radiation in the same range as survivors of the Hiroshima atomic bomb attacks who were less than half a mile from ground zero.

Exposure to Environmental Hazards from Natural Sources

As the preceding chapters indicate, most environmental hazards with the potential to cause cancer risk are the product of human activity. Some environmental carcinogens, however, come from natural sources. Radon

Radon

Radon-resistant radon is an inert (i.e., not chemically reactive), colorless, odorless gas, one in a chain of naturally occurring products of uranium decay. Radon is formed from the decay of radium released from uranium ore, which is ubiquitous in soil and rock worldwide. As radon forms in the earth, it rises to the surface where it dissipates rapidly in the air. However, when radon enters residential and other tightly enclosed structures, its concentration can rise to levels that increase cancer risk, particularly when inhabitants of homes with higher radon levels are exposed over a period of years. Radon radiative alpha particles produced by radon’s two short-lived decay products can directly or indirectly damage DNA in lung cells.

Miners who frequently work underground are exposed to high levels of radioactive radon, which is associated with elevated lung cancer risk. Miners who smoke are at particularly high risk. People also can be exposed to

workplace radon; these exposures usually occur among workers such as water plant operators and fish hatchery attendants and among people whose drinking water comes from deeply drilled wells. Little research has been conducted on radon workplace or drinking water exposures.

Comparative risk assessments by the EPA (Environmental Protection Agency) and its Science Advisory Board have consistently ranked radon among the top four environmental risks to the public.

Although some recent studies suggest there could be a heritable component to the beneficial stimulatory effect of low-dose residential radon exposure, numerous human cohort and case-control studies have concluded that radon causes lung cancer. The second leading cause of lung cancer in the United States and the leading cause of lung cancer among people who have never smoked. Radon-induced lung cancer is responsible for an estimated average of 20,000 deaths annually, though scientists believe the range could be as wide as 4,000-10,000 radon deaths per year. People who smoke and also are exposed to radon have a higher risk of lung cancer than from either exposure alone.

Jay Lehrer
NATIONAL COUNCIL ON RADON

...about a third of the radon-attributable lung cancers are preventable at the current EPA action level.

Table 7

<table>
<thead>
<tr>
<th>Radon Action Level</th>
<th>Highest Allowable Level</th>
<th>Current Action Level</th>
<th>Lifetime Risk of Lung Cancer Death (per Person)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
<tr>
<td>0.7</td>
<td>5</td>
<td>15</td>
<td>15 x 10^-6</td>
</tr>
</tbody>
</table>

Note: Table 7 is a revised version of Table 6, reflecting the updated radon action level recommendations. The new action level of 15 picocuries per liter (pCi/L) was established to provide a margin of safety and to reduce the risk of radon-related lung cancer in U.S. homes.

Residential Studies

Radon Resistant New Construction Workshop – Nov 2012
Radon in U.S.

Radon concentration, pCi/L

Attributable risk

AR = 0.14

~ 1/3 of lung cancers from homes above EPA action level (or 5-8K lung cancer deaths/yr)

Radon in U.S.

EPA action level

0.00 0.05 0.10 0.15

0 5 10 15 20

0 5 10 15 20

While the public may know that radon and, notably few deaths are below the level at which radon concentrations should be considered elevated, the actual annual risk to the general public by EPA estimates is in the range of 10,000 deaths per year. Another study, published by the National Academy of Sciences, suggests that the health risk associated with radon is higher than previously thought. It is estimated that radon is responsible for about one-third of all lung cancer deaths in the United States. Radon is a naturally occurring radioactive gas that is colorless, odorless, and can accumulate in homes to levels that pose a significant risk to health. It is important to know that radon is naturally occurring, but in some homes, it is not. We can build homes radon resistant. We just choose not to do so.

WILLIAM HEIDI
UNIVERSITY OF IOWA
Based on its conclusions, the Panel recommends:

RECOMMENDATION

The cancer risk attributable to residential radon exposure has been clearly demonstrated and must be better addressed. The following are needed:

- The Environmental Protection Agency (EPA) should consider lowering its current action level (14 pCi/L) for radon exposure, taking into account data on radon-related cancer risk developed since the existing action level was established.

- Public and health care provider education should be developed and broadly disseminated to raise awareness of radon-related cancer risk.

RESPONSIBLE AGENCIES, STAKEHOLDERS, AND OTHER ENTITIES

- EPA
- HHS
- Health care provider professional organizations
- Media

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
Based on its conclusions, the Panel recommends:

<table>
<thead>
<tr>
<th>RECOMMENDATION</th>
<th>RESPONSIBLE AGENCIES, STAKEHOLDERS, AND OTHER ENTITIES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improved testing methods for residential radon exposure and better methods for assessing cumulative exposure should be developed. Tax deductions or other incentives should be implemented to encourage radon mitigation retrofitting of existing housing. Building code changes should be made to require radon reduction venting in new construction.</td>
<td>Industry
Congress
Internal Revenue Service
State and local governments</td>
</tr>
<tr>
<td>• All schools, day care centers, and workplaces should be tested at regular intervals for radon. Radon level data must be made available to the public. Buildings found to have levels in excess of the EPA action level should be mitigated.</td>
<td>State and local governments</td>
</tr>
</tbody>
</table>

Please feel free to contact me with questions

R. William Field, Ph.D., M.S.
Professor
Department of Occupational and Environmental Health
Department of Epidemiology
College of Public Health
University of Iowa

Bill-field@uiowa.edu

Radon Resistant New Construction Workshop – Nov 2012
Residential Studies
Radon Professionals Listserv
http://list.uiowa.edu/archives/radonprofessionals.html