Radon Review and Update: How Good is the Science
Mar 2010

EPA Office of Radiation and Indoor Air (ORIA)
Indoor Environments Division (IED)

CAPT Susan Conrath, PhD, MPH,
US Public Health Service

conrath.susan@epa.gov 202-343-9389

Radon as an Indoor Problem

• When:

• Where:

• How:

Radon as an Indoor Problem

• When: 1984

• Where:

• How:

Copyright © 2010
Radon as an Indoor Problem

• When: 1984
• Where: Limerick Nuclear Power Plant
 Reading Prong area of PA
• How: Stanley Watras set off plant nuclear alarms

Radon as an Indoor Problem

• When: 1984
• Where: Limerick Nuclear Power Plant
 Reading Prong area of PA
• How: Stanley Watras set off plant nuclear alarms
 Radon was coming from his home [2700 pCi/L]
Policy Setting Considerations

• Scientific Basis
Policy Setting Considerations

- Scientific Basis
- Best Available technology
- Cost-Benefit
- Legislation
EPA & Radon

- EPA has general **Regulatory Authority** to implement Title III of TSCA (i.e. IRA).
- Voluntary Program
 - Radon Outreach Effort
- EPA relies on others for Research/Science Development

Radon Risk in Perspective

- EPA and its Science Advisory Board
 - Radon among the top four Environmental risks to the Public
 - Radon ranked #1 risk in the Home

Radon Risk

- Second Leading cause of Lung Cancer
- Leading cause of Lung Cancer in Non-Smokers
Source of Radon Risk

Alpha Radiation

Epidemiology Study Designs

• Cohort
 – Identify populations based on exposure
 – Follow for disease occurrence

Copyright © 2010
Epidemiology Study Designs

- **Cohort**
 - Identify populations based on exposure
 - Follow for disease occurrence

- **Ecological**
 - Compares level of disease & exposure in groups
 - Cannot correlate exposure to sick individuals
 - Cannot control for confounders

Epidemiology Study Designs

- **Cohort**
 - Identify populations based on exposure
 - Follow for disease occurrence

- **Ecological**
 - Compares level of disease & exposure in groups
 - Cannot correlate exposure to sick individuals
 - Cannot control for confounders

- **Case-Control**
Epidemiology Study Designs

• Cohort
 – Identify populations based on exposure
 – Follow for disease occurrence

• Ecological
 – Compares level of disease & exposure in groups
 – Cannot correlate exposure to sick individuals
 – Cannot control for confounders

• Case-Control
 – Identify individuals with disease & individuals without disease
 – Look at and compare exposures

EPA's Risk Assessments Based on Miner [Occupational] Studies

Radon Risks Are Significant and Supported By Strong Science

• National Academy of Science [NAS] BEIR VI Report
 - *The Health Effects of Exposure to Indoor Radon* (February, 1998)
• Serious public health problem

• Second-leading cause of lung cancer
BEIR VI Conclusions

• Serious public health problem
• Second-leading cause of lung cancer
• No evidence of a threshold
• Effects of Radon & Smoking more powerful in combination

BEIR VI Conclusions

• Serious public health problem
• Second-leading cause of lung cancer
• No evidence of a threshold
• Effects of Radon & Smoking more powerful in combination
• Radon contributed to 15,000 or 22,000 US lung cancer deaths in 1995 [2,100 or 2,900 in never smokers].
BEIR VI Conclusions

- Serious public health problem
- Second-leading cause of lung cancer
- No evidence of a threshold
- Effects of Radon & Smoking more powerful in combination
- Radon contributed to 15,000 or 22,000 US lung cancer deaths in 1995 [2,100 or 2,900 in never smokers].
- Reduction of Residential Radon levels above 4 pCi/L could prevent approx. 1/3 of the annual deaths

Summary of Miner Studies
Courtesy J. Lubin (NCI)

- Clear lung cancer dose-response in all cohort studies
Summary of Miner Studies
Courtesy J. Lubin (NCI)

- Clear lung cancer dose-response in all cohort studies
- BEIR VI miner-based risk models (11 studies)
- Continuing expansion of data (currently 15 studies)
 5,000+ cases, 2M person-yrs
- Cumulative exposures in miners overlap home exposures
Cohort Studies (15) of Radon-Exposed Miners
Courtesy J. Lubin (NCI)

EPA Assessment of Risks from Radon in Homes, by ORIA/Radiation Protection Division
(EPA 402-R-03-003, June 2003)

EPA Radon Assessment Results
– Modified & extended the NAS BEIR VI report
[consultation with SAB and NAS panel members]
EPA Radon Assessment Results

- Modified & extended the NAS BEIR VI report [consultation with SAB and NAS panel members]
- Best estimate of US population risk in homes is about 20,000 (21,100) lung cancer deaths per year. [At US average indoor radon conc.]

EPA Radon Assessment Results

- Modified & extended the NAS BEIR VI report [consultation with SAB and NAS panel members]
- Best estimate of US population risk in homes is about 20,000 (21,100) lung cancer deaths per year. [At US average indoor radon conc.]
- Current Risks at Action Level
 - Smokers 6/100
 - Never Smokers 7/1000

EPA Action Level

- 4 pCi/L
- Technology-based NOT Health-based
- Lower Levels are NOT Safe
- Risks @ Action Level
 - Smokers 6/100 [10^{-2}]
 - Never Smokers 7/1000 [10^{-3}]
Scope of the Radon Risk in Homes

• 100M 'should test' homes

• 6% (1:15) of homes ≥ 4 pCi/L
Scope of the Radon Risk in Homes

- 100M 'should test' homes
- 6% (1:15) of homes ≥ 4 pCi/L
- As of 2008, 7.1M US homes still have elevated indoor radon levels

Strengths of Radon Risk Assessment

- Known Human Carcinogen
Strengths of Radon Risk Assessment

• Known Human Carcinogen
• Extensive Epidemiological Studies

• Consistency in Magnitude of Risk
• Extensive Review by National and International Groups
Strengths of Radon Risk Assessment

- Known Human Carcinogen
- Extensive Epidemiological Studies
- Consistency in Magnitude of Risk
- Extensive Review by National and International Groups
- Consensus of Expert Committees

Additional Strengths of Radon Risk Assessment

- Risk Model Derived from Human Data

Copyright © 2010
Additional Strengths of Radon Risk Assessment

- Risk Model Derived from Human Data
- Well Characterized Exposure of General Population
- Analysis of Dosimetry in Mines & Homes

- Extrapolation NOT Large
Additional Strengths of Radon Risk Assessment

- Risk Model Derived from Human Data
- Well Characterized Exposure of General Population
- Analysis of Dosimetry in Mines & Homes
- Extrapolation NOT Large
- Extensive Peer Review & Detailed Uncertainty Analysis

International Consensus on Risk

Miner to Residential Extrapolation
Equivalent?

Radon Residential Case-Control Studies

- 22 worldwide residential case-control studies [19 show an assoc]
- Small study populations

- Continuing meetings of PIs after 1995

Copyright © 2010
Residential Case-Control Pooling

European Pooling
- 13 Studies from 9 Countries
 - Austria
 - Czech Republic
 - Finland (nationwide)
 - Finland (south)
 - France
 - Germany (eastern)
 - Germany (western)
 - Italy
 - Spain
 - Sweden (nationwide)
 - Sweden (never smoking)
 - Spain
 - United Kingdom
- Total 7,148 cases and 14,208 controls

North American Pooling
- 7 Studies from 2 countries:
 - New Jersey
 - Winnipeg
 - Missouri (non-smoking women)
 - Missouri II (smokers)
 - Iowa
 - Connecticut
 - Utah-South Dakota
- Total 3,622 cases and 4,966 controls

Chinese Pooling
- 2 Studies
 - Gansu
 - Shenyang
- Total 1050 cases and 1996 controls

North American, European and Chinese Residential Risk Pooling Studies

- Provide direct evidence

- Results:
 - Validate miner extrapolations
 - Directly demonstrate residential radon risks

![Graph of Radon Concentration vs. Odds Ratio](image)

Results of All Radon Studies of Lung Cancer

Courtesy of Jay Lubin, NCI

Copyright © 2010
Strengths of Radon Risk Assessment

- Known Human Carcinogen
- Extensive Epidemiological Studies
- Consistency in Magnitude of Risk
- Extensive Review by National and International Groups
- Consensus of Expert Committees
- ID as Serious Public Health Risk
- Risk Model Derived from Human Data
- Well Characterized Exposure of General Population
- Analysis of Dosimetry in Mines & Homes
- Extrapolation NOT Large
- Extensive Peer Review & Detailed Uncertainty Analysis
- International Consensus on Risk

Strengths of Radon Risk Assessment

- Known Human Carcinogen
- Extensive Epidemiological Studies
- Consistency in Magnitude of Risk
- Extensive Review by National and International Groups
- Consensus of Expert Committees
- ID as Serious Public Health Risk
- Risk Model Derived from Human Data
- Well Characterized Exposure of General Population
- Analysis of Dosimetry in Mines & Homes
- Extrapolation NOT Large
- Extensive Peer Review & Detailed Uncertainty Analysis
- International Consensus on Risk
- New Residential Pooling Results

US Radiation Exposure

- Radon Largest Source of Radiation Exposure [Exclud. Med]
- Outdoor Radon Natural Pollutant
- Radon in Homes is NOT
Comparative US Cancer Death Rates in 2005
Courtesy of Bill Field (U of Iowa)

Comparing Radon Related Cancer to Other Cancer Types

- Lung Cancer (radon)
- Liver Cancer
- Brain Cancer
- Stomach Cancer
- Melanoma
- Oral Cancer
- Gallbladder Cancer
- Bone Cancer

US Surgeon General’s National Health Advisory on Radon
Issued January 13, 2005

- “Indoor radon is the second-leading cause of lung cancer in the United States”
- “breathing it over prolonged periods can present a significant health risk”
- “Radon can be”
 - “detected with a simple test”
 - “fixed through well-established venting techniques”

Public Service Campaign
U.S. Surgeon General

TV, Print (Magazine, Newspaper), Radio

Copyright © 2010
WHO International RN Project [IRP]

WHO IRP
• Started in 2005

WHO IRP
• Started in 2005
• Key output: WHO Handbook on Indoor Radon [launched Sept 2009]
WHO IRP

• Started in 2005
• Key output: WHO Handbook on Indoor Radon [launched Sept 2009]
• 30 countries and over 100 experts
• Consensus: indoor radon is a leading cause of lung cancer worldwide

WHO IRP

• Started in 2005
• Key output: WHO Handbook on Indoor Radon [launched Sept 2009]
• 30 countries and over 100 experts
• Consensus: indoor radon is a leading cause of lung cancer worldwide

WHO IRP

• Started in 2005
• Key output: WHO Handbook on Indoor Radon [launched Sept 2009]
• 30 countries and over 100 experts
• Consensus: indoor radon is a leading cause of lung cancer worldwide
• First Global Call-to-Action on indoor RN

Copyright © 2010
WHO Handbook on Indoor Radon

- Consensus document
- Almost complete agreement with US positions
WHO Handbook on Indoor Radon

- Consensus document
- Almost complete agreement with US positions
- Recommended a reference level of 2.7 pCi/L

New Reference Level Will Not Affect EPA’s Action Level of 4 pCi/L

- EPA’s recommends:
 Consider fixing homes testing 2-4 pCi/L since No Safe Level
New Reference Level Will Not Affect EPA’s Action Level of 4 pCi/L

- EPA’s recommends:
 Consider fixing homes testing 2-4 pCi/L since No Safe Level

- WHO Handbook recommends countries reduce reference level only after improving their testing and fixing rates

Why Not Just Expand Non-Smoking Programs

- Radon is a communal not an individual risk
Why Not Just Expand Non-Smoking Programs

- Radon is a communal not an individual risk
- US has had 50+ years of non-smoking programs
- Most US households don’t allow smoking
- Need to address the source of the Radon exposure
Other Recent Developments

• Presidents Cancer Panel invited speakers on radon to its Dec 2008 Environmental Cancer Meeting.
 – Interim Reports released in Dec 2009 & Jan 2010
 – Final Report in April 2010

• Health Physics Society came out with a new Position Paper on radon
 – Released in Oct 2009
 – Endorses EPA’s Action Level of 4 pCi/L
 – Endorses EPA Rec. to consider fixing between 2 and 4 pCi/L

Rn Program has accomplished a lot...
More than 6,000 Lives Saved

We still have much to do…

EPA Policy Position on Radon

• Because Radon:
 - Constitutes Substantial Risk
 - Is Largely Preventable
 - Is Easy to Control

• Reduction of Risk from Radon Exposure is Prudent Public Policy